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ATTENUATION O F  FORCED WEAK PLANE PRESSURE WAVES IN A GAS 
WITH RADIATIVE HEAT TRANSFER 

V. A. Prokof'ev 

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 

This paper considers the effect of radiative heat transfer on the 

propagation of fo;ced plane harmonic pressure waves of small a m -  
plitude in an infinite emitting-absorbing inviscid nonconducting gas. 
The radiative pressure and radiative energy are neglected. The pur- 
pose of this paper is: a) to construct a theory based on the exact di- 
rectional distribution of the total (frequency-integrated) specific in- 
tensity and to use this theory to calculate the parameters of the wave 
motion, b) to compare the exact theory with results obtained on the 
basis of the direction-averaged equation of radiative transfer [1] so 
as to estimate the errors introduced by various directional approxima- 
tions and to demonstrate the importance of the anisottopy of radiation 
in radiation gasdynamies. 

In the linear theories of Stokes, Rayleigh, Kirchhoff, and Langevin 
the problem of wave attenuation is separated into special cases, in 
each of which only one single process is considered. This separation is 
admissible when to the first approximation the effects of the different 
dissipation mechanisms (viscosity, thermal conductivity, radiation, 
etc. ) are additive. When only one factor is considered the problem 
becomes much simpler and the results are more amenable to physical 
interp~etatiorq and these results can then be used in the solution of the 
complete problem. 

w The c h a r a c t e r i s t i c  equat ion .  The o n e - d i m e n -  
s iona l  p lane  mot ion  (in the  x - d i r e c t i o n )  of  a c o m p r e s -  
s ib le  i nv i sc id  f luid with hea t  t r a n s f e r  by e m i s s i o n  and 
a b s o r p t i o n  of  r ad i an t  e n e r g y  i s  d e s c r i b e d  by  the s y s -  
t em of equat ions  of  r a d i a t i o n  g a s d y n a m i c s ,  which con -  
s i s t s  of the  equa t ions  of  cont inui ty ,  momen tum,  e n e r -  
gy, and r a d i a t i v e  t r a n s f e r  t o g e t h e r  with the  equat ion  
of s t a t e  (for a t w o - p a r a m e t e r  gas)  and the  r a d i a t i v e  
equat ion  of  s t a t e - - K i r c h h o f f ' s  law (if loca l  t h e r m o d y -  
n a m i c  e q u i l i b r i u m  i s  a s s u m e d ) ,  

du t Op d o Ou 
dt - -  p Ox ' d~t- ~ - -  P ~ ' 

dU I ( Ou O H )  ~ - = - - ~ -  p ~-~ + - ~ - ,  

oJ 
o~(B- - ] ) ,  u =  T), cos ~ ~-z  = qD (p, 

p =I  (o, r), B ~,~ ~' -rl 

H ( x , t ) = 2 ~ z f J ( x , t , t ~ ) c o s ~ s i n t ~ d ~  , o - - p c .  (I.I) 
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Fig .  1. Reduced  d a m p i n g  c o e f -  
f i c i en t s  o f n e a r l y a d i a b a t i c  p r e s -  

s u r e  waves .  

3, pp.  8 -16 ,  1966 

Here  p, p, T, u a r e  the  p r e s s u r e ,  dens i ty ,  t e m p e r a -  
t u r e ,  and ve loc i t y  of  the fluid,  x i s  the coo rd ina t e ,  t 
i s  t i m e ,  U i s  the i n t e rna l  e n e r g y  dens i ty ,  J i s  the  t o -  
ta l  spec i f ic  i n t ens i ty  of r ad ia t ion ,  d is  the angle  b e -  
tween  the r a y  of r ad i a t i on  and the x ax i s ,  H i s  the  r a -  
d ia t ive  flux, c~ is the mass absorption coefficient, 
is the integrated emission coefficient, and ~' is the 

Stefan-Boltzmann constant. All variables in these 

equations are considered to be continuous. 
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Fig. 2. Damping coefficients per wave- 
length ~ i  (sol id  l ines )  and p e r  wave -  
length of the ad i aba t i c  sound wave c~i0 
(dashed l ines )  for  y = 5/3 .  The va lue  of 

Z is shown on each curve .  

C o n s i d e r  an in f in i te  homogeneous  gas  a t  r e s t  (whose 
p a r a m e t e r s  we sha l l  denote  by s u b s c r i p t  0) and le t  
s m a l l  p lane  h a r m o n i c  p e r t u r b a t i o n s  be exc i t ed  in the 
p lane  x = 0. As a r e s u l t ,  a l l  the  p a r a m e t e r s  of the  gas  
will assume the perturbed values 

B (x, t) = 17o [i § R'  (x, t)], 

B '  (x, t) = R '  (0, 0) exp (ax + iat), 

u = CoU', H = 2nBoH', 

Uo--0 ,  H o = 0 ,  Y o = B o ,  (1.2) 

w h e r e  the p r i m e s  denote  p e r t u r b a t i o n s .  H e r e  R d e -  
no t e s  any of  the  v a r i a b l e s  p, p, T, w, J ,  B; c o i s  the  
ad i aba t i c  speed  of  sound, a i s  a c o m p l e x  cons tan t ,  to 
be d e t e r m i n e d  f r o m  the solut ion ,  and a i s  the c i r c u l a r  
f r e q u e n c y  of  the  fo rced  o s c i l l a t i o n s .  A s s u m i n g  tha t  a l l  
p e r t u r b a t i o n s  and t h e i r  d e r i v a t i v e  s a r e  s m a l l  and sub-  
s t i tu t ing  (1.2) into the  l i n e a r i z e d  f o r m  of (1.1),  one ob -  
t a i n s  a s y s t e m  of  l i n e a r  homogeneous  equa t ions  fo r  
the  p e r t u r b a t i o n s .  The  condi t ion  fo r  the  e x i s t e n c e  of  
non t r i v i a l  so lu t ions  of  t h i s  s y s t e m  y i e l d s  the  c h a r a c -  
t e r i s t i c  equa t ion  

t , 1 4 - q  i + m ~  

(t CO(~ 
q =  r = m v  ~ qr "p iqv  rn =- mr + im i  = 

v ~t -- g ' (p%T)~c~ ' 
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Fig. 3. Damping coeff icients  a i (solid l ines)  and ~ 0  (dashed l ines)  
for different  values  of the ra t io  of specif ic  heats (indicated on the 

curves) :  a) Z = 6, b) Z = 10. 

Po'~'& hzha h~ Po h ~ = l O l n p  
c o = ~{h t -~o]  ' T - -  t - ~ - 3 f -  h~h4 Po ' \ O l n p ] o '  

( O ln p ~ OU 

Here Y is  the ra t io  of specific heats  and c v is  the spe-  
cific heat at cons tant  vo lume.  

The logar i thmic  funct ion in (1.3) replaces the integral  

1-bq 
l n l + q - -  i dz l - -  q - -  ~ - -  0 . 4 )  

1--q 

where the path o f  integrat ion in the complex  plane is a long the straight 
l ine I + q, t -- q. Consequently,  we take the branch of the logar i thm 
with the a rgument  in (0, ~r). 

The ana ly s i s  of the effect of rad ia t ive  t r a n s f e r  on 
weak waves is  reduced to the de t e rmina t i on  of q (m o r  
a) f rom Eq. (1.3) as a funct ion of the f requency  and 
the p r o p e r t i e s  of the gas .  Both s ides  of the equat ion 
a re  even funct ions  of m;  the forced osc i l l a t ions  p ropa -  
gate in  e i the r  d i rec t ion  accord ing  to the same  ru le .  
The re  exis t  no pure ly  i m a g i n a r y  or  r ea l  roots  of the 
c h a r a c t e r i s t i c  equat ion except the t r i v i a l  solut ion c o r -  
responding  to the gas at r e s t .  Thus the solut ion r e p -  
r e s e n t s  damped t r ave l i ng  waves .  

All unknown v a r i a b l e s  can be expressed  in  t e r m s  
of one of them,  e . g . ,  the t e m p e r a t u r e  pe r tu rba t ion ,  

p ,  __ Thz p ,  __ hz m ~ 
+ rn~ T "  " h~ 7 + m~ T ' ,  

u ' = i  h2 m 
h l . f W m 2 T ' ,  B ' = 4 T :  

h2h 3 m 2 

j ,  4T" H ' =  2 ( t - - t  In t-?-q~T' (1.5) t -}- q cos ~ ', q \ 2 q  t - - q ]  " 

The phys ica l  mean ing  of v, w, Z, ~, m r ,  m i was ex-  
plained in  ano the r  pape r  [1]; the co r r e spondence  be -  
tween the p r e s e n t  nota t ion  and that  of [1] is  

w = g w  ~ Z = 2 g ' Z  o ~ = 2 g ' ~  ~ Z v = 2 g - - ' Z ~ 1 7 6  g ', g~ 

where the s u p e r s c r i p t  o denotes  the v a r i a b l e s  of 
[1]. The symbols  g and g '  denote cons tan t  coef f ic ien ts  
a s soc ia t ed  with the d i r ec t iona l  ave rag ing  of the equa-  
t ion  of r ad ia t ive  t r a n s f e r .  The mean ing  of q is  c l e a r  

f rom the ident i t ies  

03 0 

v = 2rt~r 2~  
to = t~o = 2 ~ n , o ,  [q~l-T= rl = I m ~ ] v  = 

t 2n;% 2~ 
- ~ v,~ = ~ = l = -/-~ = 2nn, ,  (1.7) 

Here a T is  the wave damping coeff icient  per  photon 
mean  f ree  path Xr; l ~ ,  I z are  the opt ical  t h i cknesses  
of an adiabat ic  sound wave and the p r e s s u r e  wave; 
nT0 and n~ a re  the co r r e spond ing  optical  wave n u m -  
b e r s .  

In the following we de t e r mi ne  the damping coeffi-  
c ien ts  of the p r e s s u r e  waves:  1) an0 pe r  wavelength 
of a sound wave l 0 = 2~c0/~; 2) ~a pe r  wavelength of 
the p r e s s u r e  wave; 3) na t  pe r  uni t  length;  4) ~2, p r o -  
por t ional  to the ra t io  of na t  to the square  of the f r e -  
quency, which is  of some i n t e r e s t  in  acous t ics :  

,nat = [ar [, a,~o = 2zralo = 2~x [m~ 1, 

aa = 2~al = 2r~ m-z' cx~ = { m~___~l ( 1 . 8 )  

The c h a r a c t e r i s t i c  equat ion conta ins  the two govern-  
ing d i m e n s i o n l e s s  p a r a m e t e r s  v and Z, o r  combina -  
t ions  of these .  These  p a r a m e t e r s  can be expressed  in  
t e r m s  of the c h a r a c t e r i s t i c  t ime  for  wave osc i l l a t ions  
- - the  per iod  d, the c h a r a c t e r i s t i c  t i m e  for  absorp t ion  
t r a - - t h e  t ime  dur ing  which the wave t r a v e l s  over  a d i s -  
t ance  equal to one r ad ia t ion  m e a n  f ree  path, and the 
c h a r a c t e r i s t i c  t ime  for e m i s s i o n  t r e - - t h e  t ime  r e -  
qui red  for  the e m i s s i o n  of the v a r i a b l e  pa r t  of the i n -  
t e r n a l  energy ,  

1% = ~ , t r a =  c---o = CoO) o ' ~ = \ 4 a B m  ] o '  

E = 4n~10, a0 = ha = (c~,T)o t (1.9) 

~Itre 8~tra 2~tra Z 4tra ~t  = ~ - ~ - - ,  Z v  -~  , .  
- -  ~ ' --~-. tr e ' ~ t re  

These  p a r a m e t e r s  a lso admit  i n t e r p r e t a t i o n  in  
t e r m s  of energy,  

cvoT o 
Z ~- 4 4~:vl~ ~t = ' - ~  4~13o~ 

cvoT 0 ' 

ZV - -  6~tkrT~ ]r 16~t~'rB~ 
lo(pcvTco)o ' ~ 3To 

(I. lo) 

Here  E is  the t h e r m a l  ene rgy  emi t ted  by uni t  m a s s  
pe r  uni t  t ime ,  e 0 is  the t h e r m a l  i n t e r n a l  ene rgy  of 
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t h e  g a s ,  a n d  k r i s  t h e  r a d i a t i v e  c o n d u c t i v i t y .  T h e  n u m -  

b e r  Z c h a r a c t e r i z e s  t h e  r a t i o  o f  t h e  e n e r g y  e m i t t e d  

b y  u n i t  m a s s  d u r i n g  t h e  t i m e  t r a  t o  i t s  t h e r m a l  i n t e r -  

h a l  e n e r g y ,  [~ c h a r a c t e r i z e s  t h e  r a t i o  o f  t h e  t h e r m a l  

i n t e r n a l  e n e r g y  to  t h e  e n e r g y  e m i t t e d  b y  u n i t  m a s s  

d u r i n g  o n e  p e r i o d ,  a n d  t h e  p r o d u c t  Z v  c h a r a c t e r i z e s  

t h e  r a t i o  o f  t h e  r a d i a t i v e - c o n d u c t i v e  h e a t  f l u x  t o  t h e  

c o n v e c t i v e  h e a t  f l u x .  I n  a l l  t h e s e  p a r a m e t e r s  t h e  s p e e d  

of s o u n d  e 0 is u s e d  as t h e  c h a r a c t e r i s t i c  s p e e d .  I t  c a n  

b e  s e e n  t h a t  Z v  i s  t h e  r e c i p r o c a l  (to w i t h i n  a c o n s t a n t  

m u l t i p l i e r )  o f  t h e  P e c l e t  n u m b e r  b a s e d  o n  k r ,  co .  

T h e  p h y s i c a l  i n t e r p r e t a t i o n  o f  t h e  r e s u l t s  o f  t h e  

s t u d y  o f  E q .  ( 1 . 3 )  c a n  b e  g i v e n  w i t h i n  t h e  f r a m e w o r k  

o f  t h e  t e r m i n o l o g y  o f  r e l a x a t i o n  a c o u s t i c s  a l s o  f r o m  

a n  e n e r g e t i c  v i e w p o i n t .  

w Nearly adiabatic wave~. It follows from the characteristic equa-  
tion that the necessary and sufficient condition for the existence of 
nearly adiabatic waves (weakly damped and propagating at almost 
the speed of sound) is that the parameter ~ be small, where 

=~--  [t  -- i-- are tgv~,, ~=/(z ,  K 
v \ v 1 

__ a3 v 2 7--I (2.1) 

For small  ~ and 9, not too close to 1 we obtain 

- ~ f -  8? ~ - J  - 

+ ~  - ~ ,a~ {,~s (3~ - 2)? + ~.~ [~ (, + ~ + ,gf- _ , ~ )  _ 

1 - -  (t - -  2T --159 Ti) u ~ - - 2 a s  ( ~ - @ 1 3 7 - - : a ~ ) ] @  

~- 4K~ 2 5 (1 ~ 6~ @ 25"; 2) - -  2 (3 -~- t77) us ~- 7 :@ J 

8K~ s [5 (1 ~- 37) - -  3a~] ~ 8Kin t ~- O (~)~ 

[ 2 2 l i 0 ~ .  + ~n~/i + ~7 + ~,~2_ (i  + 77) ~2 + ~. i - =z 
L 

@ y - -  1 ~3~ ~3 -~- t27 _- 207 ~ - -  46278 -~- 5557 ~ -}- Ke [7 -}- 677 ~- 
25672 [ 

+293y2--I0077 ~ -  (7@267-- i9372 ) a s - - 2 6 T a i ~ @ 2 a i s ] ~  

! 4K2~[87-~- 1547~-- 2 (i -u 19y)ai~- 7as~ ] -- 

- -  8K~ s (3 -~- t77 - -  3a2) @ 8K24} -{- O (~:), (2.2) 

The positive function K(v) has a single e x t r e m u m -  a max imum 
(Fig. 1) at the point v = v m, where v m = 1. 814994 (wm = 0.6q0068), 
K(Vm) = 0.229878. The parameter  B satisfies 8 - 0. 2299Z, i . e . ,  for 
any given frequency it  is small  if Z is small,  which is the case in all 
gases and liquids in all states which are not extremely far removed 
from the normal state.  The inequality 8 << 1 is satisfied for any given 
Z if  v is either sufficiently small  or sufficiently large, and in these 

two cases the inequality 8 << I becomes 

t) v ~ l ,  Z v ~ t ;  

(2.3) 

To a first approximation (2.2) yields 

aa~.aaO~-~  ~ -  t ~, 
'l 

=~ = 7--_~l ~ , ,  
7 

(2.4) 

The true damping coefficient reaches a maximum a a m a a  ~ = 

0.229878 n ( ? - - l )  Z7 -~ at v = v m, and tends to zero when v is 
very large or very small.  The coefficient is a monotone function of 
v and increases with increasing v from 0 to ~/~(7 - -  l) Zy-L The co-  
efficient %1 ~ a ~ only for v < ~0 .1 .  The general behavior of the 
curves is the same as in [1], but there is considerable quantitative 
difference. All damping coefficients are ~Z and increase with in-  
creasing y. 

,, r 

. . . ~  ~_-~-e':_ - _-~'~ " _ C ~  - Lgv  
-0.8 0 0.8 I.F Z./7 
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F i g .  4 .  D a m p i n g  c o e f f i c i e n t  p e r  r a d i a t i o n  

m e a n  f r e e  p a t h  c%- f o r  7 = 5 / 3  ( s o l i d l i n e s )  

a n d  7 = 7 / 5  ( d a s h e d  l i n e s ) .  T h e  v a l u e  o f  Z 

i s  i n d i c a t e d  on  e a c h  c u r v e .  

For small  v the right sides of (2.2) take simpler forms, 

3 2 3 y - - I  I 5 7 2 - - 3 0 7 7  :~ mr = 7 ~--~ z~ ( l - -  -~ v -~- ~- v 4) zl ~ 
' - - 7 6 - ~  

+ 33 + 3 ( _  as? + 15~7 - 143) ~] +~,Z ~12 (5~3~- 3012~% 
J 2567 o 

~-779472--98767+4679)@O (kv). 

zl ~7 --37 -~ _-- (57:--9) v2 i @ ::[:: mi = 1 _~_ 7 - I  2 6 
~T 2 k a 

7 -- i zl 4 (3573 __ 385~ 2 __ iOOi 7 __ 715) ~- 0 (ks), 

�9 3 v ~ ) _ ~ 8 ~ z ~ s i , # _ t 0 ~  i _ 1 3 _  a l = T ~ , ,  1 z1 (l - -  3 v2 ~- ~ - 

_ ~ ( ~ 2 ~ 2 - 1 6 3 7 + t 4 5 ) ~ 2 t + 7 - t  2 0 zl (4%7 --25027 J- 

631472 - -  82427 ~- 4062) + 0 (k~), 

zl = 1/2 Zv, kG ~- z?  (v4 + zliv~ + z~4), 

k ~ = z 1 ( v ~ 2 4 7 2 4 7  (2.5) 

The leading terms are in qualitative agreement with the results 
of the direction-averaged theory, Quantitative agreement can be ob- 
tained by appropriate choice of the averaging coefficients, e, g . ,  1) 
g -.~ t [ ]/'3, g'=1/2, 2) g ~ g'  = ~/8, or 3) g = 0.6402, g' = 0.6146. 
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The subsequent terms, however, do not agree with the direction- 
averaged theory. To the first approximation aa = a a o ~ a ,  % ~ a  ~, 

a<a ~ o  z, a l lcoefhc ien tsa repropor t iona l toZ,  and % *  ~ ~'r, u a ~ k r ,  
St :  ~ ~,r 3, 

For large v gqs. (2.2) yield 

~ m r = ~ l ~ { l _ ~  v ~1 7~+2"r+5~,8% 3 _~_~n ( l  - 

; - I  ) 3 %~ i ~ ~ ~v~t (n~32-- 4) 573 +%327 + t v 3"~ + 

7% 4 -~- 1278 --  18T 3 q- 287 ~ 63 ~a+ 0 (v-~ @ ~)} ,  
~- t2874 " 

~ : " h = l q  ('r - -  t)  (~ + 3) U-- 
8% s 

(7-- I) (% + i) ~ ~v ~- (T--1)(37+I)32T3 (n~+8)~-- 

_ (% -- l )  (5% ~ + 9% 3 + t5"r + 35) ~ + o (v-~ + ~9" 
t 28T ~ 

0.1 

0 

-g.; 

h 
[ ~ ^  I z , - ,  1 

o,/\,0,7 

h h % ]  Wy-y , 
i t:  .sj2/< 

F i g .  5. D a m p i n g  c o e f f i c i e n t  a n d  d i s p e r s i o n  

f a c t o r  r f o r  Y = 5 / 3 .  T h e  v a l u e  o f  Z i s  i n d i -  

c a t e d  o n  e a c h  c u r v e .  T h e  n e g a t i v e  o r d i n a t e  

a x i s  s h o w s  R = r - 1.  R *  d e n o t e s  t h e  v a l u e  

o f  R f o r  r = 7 - ~ / 2 .  

To a first approximation this agrees qualitatively with the approxi-  
mate  theory, with different meaning  for ~ and Z. The damping coef-  
ficients are proportional to Z; % = aa0 ~ g - ~ ,  c~al and cc r are inde-  
pendent of o; {~al ~ r  -1, (la ~ " r  -1, C~0 is independent of X r.  When 
y - - 1  ~ 6 ~ 1, the waves are nearly adiabatic for arbitrary Z and v, 

m r = a~6 (1 @- b/b) "+- 0 (8~), 

_-t2_. m~ = t @ ae6 (1 + b~6) -~ 0 (6 a) , 

al = 1/s~(t @ ~ ) - 1 ,  as = alfi, 

b3 = ~/, ( i  + p~)-~ 12 ( 3 ~  - i )  K~ - -  (8' + 14fi~ + 5)1, 

/Q = v(t + vg-*K-< (a.~) 

To a first approximation this yields 

_~--i ~ %--1 ~v 
~ 1  : O~lD (Z T : 

~l--~--IZvz 3 w h e n v ~ t ,  c h : ~ - ~ - ~  w h e n v > ~ l .  (2.8) 

When B(Vm) -< 1 the coefficient c~(v) has a single e x t r e m u m -  
a m a x i m u m  at the point v = v m.  When g(Vm) > 1 there are three 
extrema: a m in imum at v = v m and a max imum,  equal to 5/4,  at 
either side of the min imum,  at Vm~ and Vm~. The variables Vm~ and 
Vm~ are the roots of the equation 13 = 1 and are functions of the pa ram-  
eter Z.  As Z increases from Z = K ' l (vm ) to infinity Vm~ decreases 
from v m to zero, and Vm2 increases from v m to ~ .  When Z >> 1, 

VmzVm~ = 3. 

w Nearly isothermal waves. When ~ >> i the speed of the waves 
differs from the isothermal speed of sound hy a quantity of the order 
of ~-s. The roots of the characteristic equation can be represented 
by the series 

:J: 'nr = '/~('r - -  t) [~I @ bs~l ~ + b~815 + O (~1')], 

~t = (K'Z)-s K '  = K (v')j 

b2 = 5"r - -  1 - -  2Ks', bs = t - -  2% @ '/s Ks' T -r [3 (57 - -  t)  @ an' - -  4K2'] ,  

ba = 1 - -  5T @ 2K3" [(T - -  t) (19 T @ t) - -  2 (7 T - -  3) K3' - -  6a~'K~' + 
t6T 

+ 4Ks'~l-t-  4 ('r - -  Ks') ba-- lh3 %-1 [6"r (7 - -  1) s -  ah (5--  3v"z)ag~K:'], 

Ks' = Ks (v'), a3' = % (v'),, 

b ~ : K 3 " - - %  ~ be ' u a -  ~ {(T - -  t) (7 T @ 1) + (3 - -  i i  T - -  3an' - t -  

+ 4K3")K2"} J- 647"bI~ ~37 (T--< I)(7T --3)+ --i 2 K3' [3 (T-- l) (i - 

__ 9] 0 _ 6 5 T - 2 9 + 3 ( l l T + t ) v ' ~ a S ,  ~ +  
6(~--i) 

3(~  + v'~)~3"K3']} 3v'~-- 8v's + t + 7 - -  t - -  ' 768% ~ Ks'as "s. (3.1) 

For small  v the condition g >> 1 becomes g << 1, and for large v 
it becomes Zv >> 1, i . e . ,  for large Z Eqs. (3.1) hold in the range 
Z "1 << v << Z.  To a first approximation 

T-- i ~--1 

T--i T-- I  

v > ~ t ,  mr=Jr ~-- m i = : J :  ]/-~ i - -  (% - -  t)  (3T @1) v'" 
' 27 Z 2 ' 

al : ~=~-~ ~ ,  % = ~  ~iv' (3 .2)  

The coefficients cqc. cq reach a min imum:  

Vmin ~ v m / ]/ 'y, alomin = 2.175 (y - -  1) / Z, 

uVnm = 2.t75 (? - -  l)  / (V'y-Z). (3.3) 

w Diffusely radiating waves. Let Z >> 1, g = O(1). This is equiva-  
lent to the conditions 

Z >~  l ,  v ~ l ,  Z v  = O ( t ) ;  

z > > i ,  v > ~ i ,  ~ = o ( t ) .  ( 4 . 1 )  

For v << 1 we obtain 

mr = mr~ q7 0.3 (As 2 -I- Bu~) "1 [mr o ( A 1 A  ~ -b BIBz) 1- 

+ mio (A~Bs -- AzB,)] v ~ -/- O (v~), mi = rni o q:: 0.3 (A~ ~ -'}- 

+Ba~) - t  [mi0 (A1A~ q-  B1Bu) - -  rnra (A,B~ - -  AaB1) ] v ~ q-  0 (va)[, 

A 1 = y (taro ~ -- mio ~) + (taro ~ - -  6mroSrnio s -[- talon), 

A~ = y -b 2 (mro ~ - -  mloZ), 

�9 B1 ~ 2mromio[y @ ' 2  (taro ~ - -  rnio~)], 

B s : 4mrom o - -  yz~, (4.2) 



JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS 9 

~ 1 7 6  

a ~ =  p & ( a l - - l + z ~ D l  'h, a 3 =  p & ( a ~ + l - - z ~ D ]  '/, 

a~ = [t -~- al-J- Zl 2 -[- 2(a~zl-- va~)] % 

(v= I, if y<2, v=--l~ if ]?>2). (4.3) 

To the first approximation these results coincide with those of the 
averaged theory, but in the averaged theory z I = Z*v ~ The parame- 
ters Z and v appear only in the combination Zv. The coefficient cc r 
increases with z l from (y -- l) Zv ~ / (6?), proportional to o 2 and k2r , 
to 3 (y --  i) / (2 l/'y-Z) which is independent of o and X r. For equal zl, 
Zcc r increases with increasing 7. For small z~ to the first approxima- 

~ ~ ~ o-~ ~ Xr ~, tion Cqo o and al0 Xr, while for large z I c~0 and cq0 
and 

z ~ i ,  ~ o = ~ = ( Y - - i )  Zv/(6Y); 

z~ >~ t, a~o = a~ =~3 (y --  1) / (2 V'y-zv). (4.4) 

In the remaining :range of z 1, for equal zl and y cq < c~10 , but 
the general form of the curves for c~10(z~) and C~l(Zl) is similar. Each 
of these has one ext remum- a maximum 

1 
h ~ = ~, = ~ o . ~  = - e  (~ V ~ -  r - g ~ )  '/' 

~ ~ = (~ _ F~) (~ + Vg-~ (4. ~) 

This case corresponds to the diffusion approximation for radiation. 
Assuming that the radiative transfer can be represented by radiative 
thermal conductivity, we can replace the equation of radiative trans- 
fer in (1.1) by the relation N = --  krOT / Ox and thus obtain (4.3) in-  
stead of the characteristic equation (1.3). 

~5. Emitting waves. In the case Z >> 1, g = 0 (1) we have 

% = - ~ o T  ~ t ( ~ - - l ) ( ~ - - ~ ) ~  v - ~ +  

(T - -  t )  (mioA - -  mroB) ~ v-~ @ . . . .  
27 ( t  + U) ~ 

(T ~ - -  1) ~ v. ~ (T " t) (mroA + mioB) ~ v "~ + "  "~ 
m~ = m~o q: 4 (t + U) (T ~ + SD 27 (1 + ~)~ 

A = i - -  { ~  + a~ [4~a § (3"r ~ - -  2 7 - -  i l)  ~ - -  (9T ~ + 2 z - -  l ) ] ,  

= - ~ + a [(~ + i)  ~ + ( 9 ~ - -  5) U - -  x (3~ + l)] ,  (5.  ~) 

i6 ( ~  + ~) (! + ~)  

2 (i + ~2~12) 

To the first approximation we have purely emitting waves [1], 
which depend only on the emission of radiation. To the first approxi- 
mation the expressions agree with the results based on the direction- 
averaged equation of radiative transfer. In the limiting cases 

go 

= ~ F  t ~ ~. @ . a )  
~tal 

co 

The variables ~i, alO, and a I have single extrema-maxima 

~r . . . .  = T \ r - ~ - X /  

1 T - - I  

i V ~ -  i (5.4) 
~Imax-- ~, =1max-- ~f~§ 

The damping coefficient increase with increasing y. 
This case corresponds, to the first approximation, to the Newtonian 

theory of wave motion in purely emitting media, without absorption 

[2, 3]. Assuming that the heat transfer is due only to the deviation 
of the radiative emission from its equilibrium value, one can replace 
B -- J in the right side of the equation of radiative transfer by B - B 0 
to obtain (5.2) instead of (1.3). 

w Wave attenuation in an emitting-absorbing gas. For small Z 
the portion of energy transferred by radiation is small, the process is 
nearly adiabatic, the damping of the pressure waves is weak, and the 
waves propagate at the baplaeian speed of sound. This case is de- 
scribed in w In the case of large optical thicknesses the interior of 
each wave reaches radiative equilibrium and in the case of large fre- 
quencies the waves approach a frozen state. For moderate values of 
the optical thickness of the wavelength one obtains maximum values 
of the damping coefficients cq0, c~ 1 and minimum speed. When Z in- 
creases to 4-5 the damping coefficients increase, but the general 
form of the dependence on v remains the same, as can be seen in 
Figs. 2-4, which are based on numerical solutions of (1.3). Further 
increase in Z results in a qualitative change of the curves c~i0 and cq 
in the range v = O(1): first, two additional inflection points appear 
to the right of the maximum and then a minimum and a maximum are 
formed. This change becomes more pronounced the higher is the value 
of y. For small y - 1 the original maximum (Z << 1) at v = 1 splits 
with increasing Z into two extrema, the one near v = 1 becoming a 
minimum. For moderate Z the behavior of the waves in the case of 
small and large v is described by (2.2), and for other values of Z it is 
described by (1.8), There appears a dependence of the quantity carZ "1 
on Z: with increasing Z the curve moves toward large v and the coef- 
ficient ar (v  ) increases as a monotone function of Z and increases with 
increasing y. The coefficients c~10, a i increase with increasing Z for 
arbitrary y only for small Z. For moderate and large Z this rule re- 
mains valid only in the regions z I << 1 and ~ << 1. 

For Z >> 1 and small or large v, when z I << 1 or ~ << 1, the waves 
are described by the equations of w In the range of moderate z 1 and 

the proper equations and results are those of w and w When t5 is 
large, the waves are described by the results of w These limiting 
equations cover the full range of v. Thus, for sufficiently large Z the 
coefficients cq0, cq have two maxima and one minimum each. 

The magnitudes of the maxima depend only on 24 the position of 
the first of these depends only on Z~ and the position of the other one 
depends on ~ and Z. Two "relaxation" times are significant. The 
minima depend on 7 and Z, and their positions depend only on ]I. 

The coefficient a r Z ' l  is a monotone function of v and increases 
from 0 to 0' - 1)/2~ and is almost the same for all large values of Z. 
The curves cq0, c~l, a r lie closer to the horizontal axis as ]/ decreases. 
For a given value of 7 the left maximum of a~0 or c~ I is larger than 
the right maximum. All extrema increase with increasing y in such a 
way that for a given value of Z the left maxima of ~10 or cq are at 
the same v, independent of v, whereas the minima and the right max- 

ima move to the left, the right maximum of al0(v) being to the left 
of the right maximum of aKv). 

The general form of the variation of the true damping coefficient 
and the wave speed for large Z is shown in Fig. 5. We can distinguish 

four regions: 
1) In the range v << Z -1 the transfer of heat inside the wave is by 

a radiative-conductivity mechanism, but the relative magnitude of 
this heat flax is small, so that the conditions are nearly adiabatic. 
The waves propagate at the adiabatic speed of sound and decay slowly. 

2) In the region v = O(Z "1) the diffusive radiative heat transfer in- 

creases with decreasing optical thickness of the wave, until nearly iso- 
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thermal conditions are reached. Smaller optical thicknesses of the 
waves correspond to stronger radiative approach to equilibrium. The 

wave speed decreases from the adiabatic wave speed to the isothermal 
wave speed. The coefficients al0 and a I teach maximum values in the 
middle of the range and are small near the boundaries of the range. 

3) In the region Z -1 << v << Z the process is isothermal: the tern- 
perature has time to reach equilibrium during one period of the wave. 
The damping coefficients are small and the wave speed is equal to 
the Newtonian speed of sound. In the range v = O(1) all variables 
reach minimum values. 

4) When v = O(Z) the optical thickness is so small that the radia- 
tion emitted by a wave is not reabsorbed. The waves emit, the wave 
speed increases from the isothermal speed of sound to the adiabatic 
speed of sound, and the damping coefficients again reach a maximum 
in the middle of the region. 

5) When v << Z the waves become so short, and the frequency so 
large, that the period of one oscillation is insufficient for the transfer 
of energy in the wave and the conditions are adiabatic. 

The basic cases of wave propagation can also be characterized 
by the value of the variable B. If g << 1, then, as can be seen from 
(1.5), the heat flux is small and the waves are weakly damped, nearly 
adiabatic sound waves and can be described by the equations of w 
If, on the other hand, B >> 1, which is possible only for large Z, then 
the waves are nearly isothermal and can be described by the equations 
of w Finally, if g = O(1), the wave speed cannot be close either to 
the adiabatic or the isothermal speed of sound and lies somewhere be- 
tween these. Three cases are then possible: 

1) v = O(1), Z = O(1), and one must consider the full character- 

istic equation; 2) v << 1, z 1 = O(1), the dissipation of energy takes 

place by a diffusive mechanism and w holds; 3) when v >> 1, g = 
= O(1) w holds. The radiation emitted by a wave has no time to be 
reabsorbed. This case corresponds to Stokes' theory. 

In terms of relaxation theory there are three relaxation times in 
the regions ~ ~ 0 (t,.a). t~ = 0 (ire), tra~ = 0 (~t,e), and for Z << 1 
only the first of these is significant. These times were defined in terms 
of v, Z, ~, above. 
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